Telegram Group & Telegram Channel
Объясните разницу между AdaBoost и XGBoost

Оба метода объединяют слабые модели в одну сильную модель. И AdaBoost, и XGBoost в процессе обучения будут увеличивать ансамбль, добавляя в него новые слабые модели на каждой итерации. Разница между методами заключается в том, как расширяется ансамбль.


▪️AdaBoost изначально присваивает одинаковый вес каждому набору данных. Затем он корректирует веса точек выборки после каждого шага. Элементы, которые были классифицированы неверно, приобретают больший вес в следующей итерации.
▪️XGBoost использует градиентный бустинг, который оптимизирует произвольную дифференцируемую функцию потерь. То есть алгоритм строит первое дерево с некоторой ошибкой прогнозирования. Затем добавляются последующие деревья для исправления ошибок предыдущих. XGBoost имеет встроенные механизмы для регуляризации.

Иными словами, разница между алгоритмами в том, что XGBoost не присваивает неправильно классифицированным элементам больший вес.

#машинное_обучение



tg-me.com/ds_interview_lib/184
Create:
Last Update:

Объясните разницу между AdaBoost и XGBoost

Оба метода объединяют слабые модели в одну сильную модель. И AdaBoost, и XGBoost в процессе обучения будут увеличивать ансамбль, добавляя в него новые слабые модели на каждой итерации. Разница между методами заключается в том, как расширяется ансамбль.


▪️AdaBoost изначально присваивает одинаковый вес каждому набору данных. Затем он корректирует веса точек выборки после каждого шага. Элементы, которые были классифицированы неверно, приобретают больший вес в следующей итерации.
▪️XGBoost использует градиентный бустинг, который оптимизирует произвольную дифференцируемую функцию потерь. То есть алгоритм строит первое дерево с некоторой ошибкой прогнозирования. Затем добавляются последующие деревья для исправления ошибок предыдущих. XGBoost имеет встроенные механизмы для регуляризации.

Иными словами, разница между алгоритмами в том, что XGBoost не присваивает неправильно классифицированным элементам больший вес.

#машинное_обучение

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/184

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

The S&P 500 slumped 1.8% on Monday and Tuesday, thanks to China Evergrande, the Chinese property company that looks like it is ready to default on its more-than $300 billion in debt. Cries of the next Lehman Brothers—or maybe the next Silverado?—echoed through the canyons of Wall Street as investors prepared for the worst.

What is Telegram Possible Future Strategies?

Cryptoassets enthusiasts use this application for their trade activities, and they may make donations for this cause.If somehow Telegram do run out of money to sustain themselves they will probably introduce some features that will not hinder the rudimentary principle of Telegram but provide users with enhanced and enriched experience. This could be similar to features where characters can be customized in a game which directly do not affect the in-game strategies but add to the experience.

Библиотека собеса по Data Science | вопросы с собеседований from ca


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA